Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(13): 5247, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35319063

RESUMEN

Correction for 'Strain mapping inside an individual processed vertical nanowire transistor using scanning X-ray nanodiffraction' by Dmitry Dzhigaev et al., Nanoscale, 2020, 12, 14487-14493, DOI: 10.1039/D0NR02260H.

2.
Nanoscale ; 12(27): 14487-14493, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32530025

RESUMEN

Semiconductor nanowires in wrapped, gate-all-around transistor geometry are highly favorable for future electronics. The advanced nanodevice processing results in strain due to the deposited dielectric and metal layers surrounding the nanowires, significantly affecting their performance. Therefore, non-destructive nanoscale characterization of complete devices is of utmost importance due to the small feature sizes and three-dimensional buried structure. Direct strain mapping inside heterostructured GaSb-InAs nanowire tunnel field-effect transistor embedded in dielectric HfO2, W metal gate layers, and an organic spacer is performed using fast scanning X-ray nanodiffraction. The effect of 10 nm W gate on a single embedded nanowire with segment diameters down to 40 nm is retrieved. The tensile strain values reach 0.26% in the p-type GaSb segment of the transistor. Supported by the finite element method simulation, we establish a connection between the Ar pressure used during the W layer deposition and the nanowire strain state. Thus, we can benchmark our models for further improvements in device engineering. Our study indicates, how the significant increase in X-ray brightness at 4th generation synchrotron, makes high-throughput measurements on realistic nanoelectronic devices viable.

3.
Nanotechnology ; 28(24): 245503, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28452329

RESUMEN

Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 µl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Nanocables/química , Proteínas Represoras/análisis , Compuestos de Estaño/química , Transistores Electrónicos , Óxido de Aluminio/química , Biotina/química , Ensayo de Inmunoadsorción Enzimática , Humanos , Concentración de Iones de Hidrógeno , Límite de Detección , Sistemas de Atención de Punto , Estreptavidina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...